Hello Ned,

To update you, last week the biologist confirmed the presence of the kestrel at the site. He also saw ground squirrel burrows, verifying the subsurface soil exposure pathway. We have started to compile the hard data from the sources for which we don't have them electronically. We will include all soil data down to 6 feet bgs. I have attached a lab sheet that provides a list of the metals and pesticides analyzed for at the site (not sure if all detected yet).

Since there are no avian toxicity data for methoxychlor, toxaphene, antimony, beryllium, cobalt, silver, thallium, PAHs, and herbicides (SW-846, method 8151, i.e., 2,4-D, dalapon, dinoseb, MCPP, etc.) precluding quantitative evaluation of these analytes, do you have any objections to us excluding them from the data entry effort? We intend to mention them in a short uncertainty section.

Once the data are entered, we will start calculating the summary stats to identify which analytes were found above a 5% detection frequency and above background for metals. The list of COIs established from this process will be included in the evaluation for the kestrel. We plan to use a food chain model to estimate the level of exposure via consumption of invertebrates by the kestrel, and incidental ingestion of soil. In the model, we'll incorporate worm BCFs from the EcoSSLs guidance document, as first priority, and will use the Region 9 BTAG TRVs as the primary source of toxicity data.

Please let me know if you have any questions or concerns regarding this approach.

Thank you,

Heather

----Black.Ned@epamail.epa.gov wrote: -----

Good morning Heather,

I'm in Cincinnati this week, but I'm checking voicemail and email. If there are shallow surface samples (1 foot or less) for the same locations, please include them in your calculations. If any surface samples are higher at 1 foot than at 5 feet bgs, I won't object to your using only the shallow data.

ned
Hello Ned,

We appreciate you reviewing the data tables associated with the Del Amo park project. Based on a quick comparison to the EcoSSLs for birds, I came up with exceedances at the same sample locations you mentioned below, with the exception of P4C and P4E (no exceedances identified). With that said, we would include the 5-foot data in the risk screening for the kestrel. However, I noticed that only one surface sample (1 foot bgs) was included in those data tables, while the rest were from 3 and 5 feet bgs. If we find that data from the surface are available for many of these locations and the concentrations at the surface are higher than the subsurface, would you be willing to allow us to only use the surface data (worst-case)?

We're still trying to figure out a way to whittle down this data management issue to a workable amount of hand-entering.

Tomorrow, one of our biologists is going to visit the site to confirm that the kestrel is still around and likely living in the area. He will also be checking for burrows to support our theory that small mammals (e.g., ground squirrels) could bring subsurface soils to the surface. Do you anticipate on being at your office tomorrow during the day, in case he would like to call you at some point? We were wondering what to do in the event that he has been there for a few hours without seeing any sign of the kestrel.

Thank you,

Heather

Heather M. Loso
Sr. Ecological Risk Assessor
Hello Heather and Erich,

Thanks for sending me the LACDPW data for the Del Amo park site next to the waste pit cap parcels. I looked it over and it's clear the soil is contaminated at many locations at 3 to 5 feet bgs (i.e., P1A, P1B, P1D, P1F, P2C, P3A, P3B, P3C, P4B, P4C, & P4E). If there are no surface data (0 to 1 foot bgs) demonstrating an absence of contamination for these locations, we'd be remiss to assume there is no exposure to the contaminants at 5 feet bgs. I suggest you include all the 5 foot bgs data for pesticides, lead and metals in your exposure data set, including the samples which are not contaminated. I see there is also one sample at 1 foot bgs (P1G) and a sample at 3 feet bgs (P1F) which should also be included.

I'll anticipate an argument that the exposure pathway under consideration, kestrels eating soil invertebrates, doesn't extend that
deep. My counter arguments include:

1. Baring data which show the surface soils are clean, the protective assumption is the surface soils are as contaminated as the sample closest to the surface.
2. Any rodents living in the area will burrow to at least 5 feet bgs and so bring that soil to the surface. In the absence of proof there are no burrowing animals present, I have to assume they are present and mobilizing shallow contamination.

ned

ned black, ph.d.
regional cercla ecologist/microbiologist
us epa r9 btag coordinator
Los Angeles County Dept. of Public Works
Land Development Division
900 S. Fremont Ave., 4th Floor
Alhambra, CA 91803-1331

Sierra Project No.: 0111-193
Client Project ID: Del Amo Park
Sample Matrix: Soil

Organo-Chlorine Pesticides and PCB's (GC/ECD)
Preparation Method: Sonication Extraction (EPA Method 3550)
Analysis Method: EPA Method 8080

<table>
<thead>
<tr>
<th>Client Sample No.:</th>
<th>P2D-5</th>
<th>P2D-10</th>
<th>P2D-15</th>
<th>P2D-20</th>
<th>P2D-25</th>
<th>Practical Quantitation Limit</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sierra Sample No.:</td>
<td>30984</td>
<td>30985</td>
<td>30986</td>
<td>30987</td>
<td>30988</td>
<td>0.001</td>
<td>mg/kg</td>
</tr>
</tbody>
</table>

Analytes:
- Aldrin
- alpha-BHC
- beta-BHC
- delta-BHC
- gamma-BHC
- Chlordane
- 4,4'-DDD
- 4,4'-DDE
- 4,4'-DDT
- Dieldrin
- Endosulfan I
- Endosulfan II
- Endosulfan Sulfate
- Endrin
- Endrin Aldehyde
- Heptachlor
- Heptachlor Epoxide
- Methoxychlor
- Toxaphene
- PCB1016
- PCB1221
- PCB1232
- PCB1242
- PCB1248
- PCB1254
- PCB1260

<table>
<thead>
<tr>
<th>Dilution Factor</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>QC Limits</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surrogate Recovery</td>
<td>92</td>
<td>88</td>
<td>97</td>
<td>102</td>
<td>101</td>
<td>42 - 147</td>
<td>%</td>
</tr>
</tbody>
</table>

QC Reference No.: 01120-BL

<table>
<thead>
<tr>
<th>Analytes</th>
<th>LCS % Rec.</th>
<th>LCS QC Limits</th>
<th>Spike % Rec.</th>
<th>Spike Dup. % Rec.</th>
<th>Spike QC Limits</th>
<th>RPF</th>
<th>RPF QC Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldrin</td>
<td>110</td>
<td>80 - 120</td>
<td>50</td>
<td>50</td>
<td>50 - 150</td>
<td>0.0</td>
<td>0 - 30</td>
</tr>
<tr>
<td>DDT</td>
<td>88</td>
<td>80 - 120</td>
<td>84</td>
<td>77</td>
<td>50 - 150</td>
<td>8.7</td>
<td>0 - 30</td>
</tr>
<tr>
<td>Heptachlor Epoxide</td>
<td>92</td>
<td>80 - 120</td>
<td>80</td>
<td>89</td>
<td>50 - 150</td>
<td>10.7</td>
<td>0 - 30</td>
</tr>
</tbody>
</table>

ND means Not Detected
Reporting Limit (RL) = Practical Quantitation Limit (PQL) x Dilution Factor
Los Angeles County Dept. of Public Works
Materials Engineering Division, 4th Floor
900 South Fremont Avenue
Alhambra, CA 91803-1331

Sierra Project No.: 0111-193
Client Project ID: Del Amo Park
Sample Matrix: Soil

ELAP No.: 2320
Date Sampled: 11/13/01
Date Received: 11/13/01
Date Prepared: 11/17/01
Date Analyzed: 11/19/01-11/20/01
Analyst: JBN/BW
Report Date: 11/20/01

CCR Title 22 Metals (TTLC)
Preparation Method: EPA Method 3050B
Analysis Method: EPA Method 6010B & EPA Method 7471*

<table>
<thead>
<tr>
<th>Client Sample No.</th>
<th>P2D - 5</th>
<th>P2D - 10</th>
<th>P2D - 15</th>
<th>P2D - 20</th>
<th>Practical Quantitation Limit</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sierra Sample No.</td>
<td>20984</td>
<td>30985</td>
<td>30986</td>
<td>30987</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analytes</th>
<th>TTLC Limits:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony</td>
<td>500</td>
</tr>
<tr>
<td>Arsenic</td>
<td>500</td>
</tr>
<tr>
<td>Barium</td>
<td>10000</td>
</tr>
<tr>
<td>Beryllium</td>
<td>75</td>
</tr>
<tr>
<td>Cadmium</td>
<td>100</td>
</tr>
<tr>
<td>Chromium</td>
<td>2500</td>
</tr>
<tr>
<td>Cobalt</td>
<td>8000</td>
</tr>
<tr>
<td>Copper</td>
<td>2500</td>
</tr>
<tr>
<td>Lead</td>
<td>1000</td>
</tr>
<tr>
<td>Mercury*</td>
<td>20</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>3500</td>
</tr>
<tr>
<td>Nickel</td>
<td>2000</td>
</tr>
<tr>
<td>Selenium</td>
<td>100</td>
</tr>
<tr>
<td>Silver</td>
<td>500</td>
</tr>
<tr>
<td>Tellurium</td>
<td>700</td>
</tr>
<tr>
<td>Vanadium</td>
<td>2400</td>
</tr>
<tr>
<td>Zinc</td>
<td>5000</td>
</tr>
</tbody>
</table>

Dilution Factor: 2/1** 2.5/1**

ND means Not Detected
Reporting Limit = (Practical Quantitation Limit x Dilution Factor) - Percent Solid
Results reported on a "Dry Weight" basis.