John and Jude (cc: George) -
Here is my draft response to Ann MacDonald, Environmental Affairs Director for Coca Cola. Here questions are in bold, followed my proposed response. She had originally asked these questions during my and Alejandro's meeting with her in late December, and she recently followed up in email. I'll forward her email to you. Please check my responses to see if they are accurate. I got some of the information from the FS, some from the ISCO 5A Tech Memo, and some from a previous monthly conference call. Space requirements for truck delivery was the only item that I did not have an answer for, so if you could provide an estimate, that would be great. Feel free to propose any wording to help communicate the "draft" nature of the estimates. That is what I tried to convey. Thanks!

-Dante

============DRAFT====================================

Dear Ann -

Here is additional information about EPA's proposed remediation activities at the Coca Cola property associated with the Del Amo Superfund site in Los Angeles, California. Note that there are a number of ways to implement the remedies, and the following information represents assumptions we used for our feasibility study. These assumptions are not "set in stone," rather they give you a baseline idea of a basic application of the technology at that location.

? Confirm timeframes of scenarios? Both scenarios assume semi-annual oxidant injections.
Scenario 1 assumes permanent well installation at 45 to 60 foot spacings, and injections occurring over 8 years.
Scenario 2 assumes temporary well installation (casings are inserted temporarily each time and then removed after the injection), and injections over 4 years.

? Size (gallons) of the above ground chemical storage tanks? Tank material and Contents? The assumption is 2 steel tanks, each 6500 gallons (10 to 12 ft height), containing hydrogen peroxide and ferrous iron. Other possible oxidants that could be used, pending design studies, are: permanganate, persulfate, peroxide + ozone. Conceptually for the temporary push alternative, the tanks could be mobilized for each injection event, brought to site and off-loaded, and stay there for the 3 week injection period, then removed. The direct-push rig would install the points, taking maybe a week, then leave. The truck with the pumps would come and stay there for the rest of the time. Afterwards, the CPT rig would return and remove the casings.

? Bulk delivery process and space/access requirements? Chemicals delivered by 4000 to 5000 gallon tanker trucks every few days during injection periods. Tank filling would take maybe an hour. [SPACE REQUIREMENTS FOR TRUCK DELIVERY?]

? Secondary containment provisions? The assumption is to temporarily boom the truck off-load areas when filling the chemical storage tanks.

? Total footprint for the chemical storage areas, as well as the VETs? Each of the two VETS areas would be approximately 2000 ft2 (approximately 30 ft x 70 ft), and the chemical storage area would be approximately 3300 ft2 (approximately 30 ft x 110 ft).

I hope this information is helpful to you. Please let me know if you have further questions. This information is meant as a baseline assumption for feasibility study purposes, and is not "set in stone." There are many variations to the design that could be employed to meet the ongoing operational needs of the warehouse facility, and we are happy to work with you and the facility to adjust our design to meet your needs.